
1

1

1

2

Have You Ever Written a Software Test Before?

What Was Your Motivation to Write Tests?

Catch bugs before they hit

production

Gain confidence while

refactoring

Document expected

behavior

Because your team lead

told you to

To bump the test coverage

metric

Perception of "tests are

good"

3

4

4

4

We need test

coverage > 45%

5

Simplified Version of the Tests I Found

• We assert that something was returned.

• We mock everything.

• We assert that an error didn’t happen.

Those Tests Weren't Written to Provide Value

• They were written to complete the Jira ticket.

• They were written to increase the test coverage.

• They weren't written to highlight any bugs.

• They were written just for the sake of writing tests.

6

3 critical bugs dormant in the covered code was found later...

27 June 2025 – 14.45

Celil Yigit

DON'T WRITE TESTS JUST FOR THE

SAKE OF IT

Writing tests for the sake of it: Antipatterns

Misconceptions / Bad habits that lead to bad test suites.

02 Three Stories: Results of these Antipatterns in CHECK24

False sense of security, bloating pipelines, and problem in
refactoring

03 Revisiting Antipatterns: Leveling up our tests

Clear strategies to write fewer, better, high-value tests

8

01

Section 1:

Writing tests for the sake of it:
Antipatterns

9

5. Sticking to "Easy" Tests

1. The Illusion of "Cost-Free" Testing

2. More Tests = Better Quality (!)

3. Treating Test Coverage as the Goal

4. Over-specific Tests

Antipattern 1: The Illusion of "Cost-Free" Testing

• Writing Cost: Initial development

effort.

• Running Cost: CI/CD time & resources.

• Maintaining Cost: Ongoing updates

& fixes (often the highest).

• Understanding Cost: Cognitive load

to interpret & debug.

10

Antipattern 2: More Tests = Better Quality (!)

11

• Assertion Value: Tests are as valuable
as their assertions.

• Real Confidence: Derived from quality,
not just high test counts.

• Misleading Metric: Test count alone
says little about effectiveness.

• Indicator, Not Goal: Coverage shows

what's run, not what's verified.

• Quality Blindspot: High coverage can

mask low-quality or missing assertions.

• Easy to fake: Even minimally asserted

tests boost coverage.

12

Antipattern 3: Treating Test Coverage as the Goal

13

Antipattern 4: Over-specific Tests

• Testing every detail: Testing the static

strings, already tested libraries

• Check Code, Not the Contract: Tests

focus on how things are done, not what

is delivered.

• Tests Fear Change: Tests resist or

break upon any change.

Antipattern 5: Sticking to "Easy" Tests

17

• Value in Layers: Integration/E2E tests
catch different, critical bugs.

• Isolation Limits: Unit tests alone can't

verify component interactions.

• Complexity Tradeoff: Harder tests
often provide higher confidence.

We covered 5 types of Testing Antipatterns

15

Let's see their consequences in CHECK24

Writing tests for the sake of it: Antipatterns

Misconceptions / Bad habits that lead to bad test suites.

02 Three Stories: Results of these Antipatterns in CHECK24

False sense of security, bloating pipelines, and problem in
refactoring

03 Revisiting Antipatterns: Leveling up our tests

Clear strategies to write fewer, better, high-value tests

16

01

17

Section 2:

Three Stories: Results

of these Antipatterns

in CHECK24

2. One Symbol. 300 Test Failures.

1. 140 Tests Later… CI/CD Was On Fire.

3. 27,000 Tests. Green CI. Broken App.

18

140 Tests Later… CI/CD Was On Fire

19

140 Tests Later… CI/CD Was On Fire

20

140 Tests Later… CI/CD Was On Fire

One Change. 300 Test Failures:

21

22

One Change. 300 Test Failures:

23

One Change. 300 Test Failures:

24

One Change. 300 Test Failures:

25

27,000 Tests. Green CI. Broken App.

26

27,000 Tests. Green CI. Broken App.

27

27,000 Tests. Green CI. Broken App.

28

44 Integration Tests in Total

27,000 Tests. Green CI. Broken App.

29

27,000 Tests. Green CI. Broken App.

We Talked About Antipatterns

30

We Talked About Their Effects in CHECK24

Let's Talk About What We Can Do to Our Tests to

Writing tests for the sake of it: Antipatterns

Misconceptions / Bad habits that lead to bad test suites.

02 Three Stories: Results of these Antipatterns in CHECK24

False sense of security, bloating pipelines, and problem in
refactoring

03 Revisiting Antipatterns: Leveling up our tests

Clear strategies to write fewer, better, high-value tests

31

01

32

Section 3:

Revisiting Antipatterns:

Leveling up our tests

5. Leverage Every Test Type

1. Have control over test costs!

2. Focus on Quality, not the Quantity

3. Use Test Coverage the right way

4. Adaptable Tests for Evolving Code

33

Level Up Testing with Doctor Mario and Nurse Peach

34

Do your CI/CD pipelines

run longer than your

coffee breaks?

Ever thought, "these

tests cost more trouble

than they're worth"?

Diagnosis: The Illusion of "Cost-Free" Testing

35

Level Up: Have control over test costs!

Consider all cost

dimensions

Define clear performance
metrics

Be brave – Prune

your tests

36

Could you delete half

your tests and still sleep

well at night?

Is your test count high

but confidence low?

Diagnosis: More Tests = Better Quality (!)

37

Level Up: Focus on Quality, not the Quantity

Always focus on

assertion quality

Have a clear goal/assertion
in mind

Fewer, smarter tests for

the same confidence

38

Is your team motivated

or pressured by high

test coverage goals?

Have you ever written a

test just to make a

coverage number go up?

Diagnosis: Treating Test Coverage as the Goal

39

Level Up: Use Test Coverage the right way

Acknowledge Test

Coverage is a map, not

a trophy

Try not to employ a rigid
coverage goal

Inspect bug leakages

from "covered" code

40

Do you have "Refactoring

Anxiety" because of how

many tests will break?

Are your tests sensitive to

formatting changes in

output strings?

Diagnosis: Over-specific Tests

41

Level Up: Adaptable Tests for Evolving Code

Test public APIs, treat
internals as black-box

Assert the key data only,
not static strings

Use builders for flexible

test data

42

Do your tests run in

perfect isolation, while

your app breaks in

integration?

Is your test pyramid

more of a pancake or a

spike?

Diagnosis: Sticking to "Easy" Tests

43

Level Up: Leverage Every Test Type

Test Types Collaborate,

Not Compete

E2E Tests: Costly Upfront,

Priceless in Reliability

Testing individual units
is never enough

Writing tests for the sake of it: Antipatterns

Misconceptions / Bad habits that lead to bad test suites.

02 Three Stories: Results of these Antipatterns in CHECK24

False sense of security, bloating pipelines, and problem in
refactoring

03 Revisiting Antipatterns: Leveling up our tests

Clear strategies to write fewer, better, high-value tests

44

01

• Prioritize BEHAVIOR & VALUE, Not Just
Coverage or Count.

• Treat Tests as CRITICAL CODE: Design,
Review, Maintain.

• If a Test Offers NO REAL CONFIDENCE,
Be Brave: DELETE IT.

• Strategically Test INTEGRATIONS, Not
Just Isolated Units.

45

Final Takeaways

• Don't write tests just for the sake it!

Vielen Dank für Ihre Aufmerksamkeit

QUESTIONS & ANSWERS

46

	Slide 1
	Slide 2
	Slide 3: What Was Your Motivation to Write Tests?
	Slide 4
	Slide 5
	Slide 6: Those Tests Weren't Written to Provide Value
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Antipattern 1: The Illusion of "Cost-Free" Testing
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Antipattern 5: Sticking to "Easy" Tests
	Slide 15: We covered 5 types of Testing Antipatterns
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: One Change. 300 Test Failures:
	Slide 22: One Change. 300 Test Failures:
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: We Talked About Antipatterns
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

